
Routing 1

Chapter 6

Routing

Communicating over a network means sending data
from one computer to another. This sounds simple, and
it is...when only two computers are involved...when
those two computers are alike...when those two com-
puters are physically near one another...and especially
when the equipment doesn’t fail.

Alas, few if any of these conditions are present on the
Internet. Indeed, when an individual user of the Internet
communicates with a popular server, the connection can
involve dozens of intermediate computers, each with
its own name, IP address, and designated duration. If
you’re curious about the number, you can use the
traceroute(1) utility on your Linux computer (or the
tracert program in a DOS window on a Microsoft sys-
tem) to find out exactly how many other systems lie
between you and a given destination site.

The traceroute(1) utility uses the Internet Control
Message Protocol (ICMP) facility of the Internet Proto-
col (IP) to determine how packets are transferred
through the network, and to measure the transmission
time required for each step of the journey.

For example, we often communicate with
www.linux.org, starting from our connection to Nevada
Bell’s Internet site (nvbell.com). The following report
(produced by the Windows tracert program) shows the
path followed by our data packets, and the stops our
packets make along that path, during their journey from
our office to the server that hosts the Linux Home Page:

Tracing route to www.linux.org [198.182.196.56]

over 14 hops:

 1 33 ms 18 ms 19 ms

 adsl-216-101-13-254.dsl.renocs.pacbell.net

 [216.101.13.254]

 2 18 ms 19 ms 19 ms

 ign1-e45.renocs.nvbell.net

 [206.171.130.249]

 3 21 ms 19 ms 19 ms

 ign0-f00.renocs.nvbell.net

 [206.13.6.194]

 4 37 ms 41 ms 32 ms

 sfra1sr2-3-4.ca.us.ibm.net

 [165.87.225.30]

 5 29 ms 30 ms 32 ms

 165.87.160.193

 6 31 ms 29 ms 28 ms

 114.ATM3-0.XR1.SFO1.ALTER.NET

 [146.188.148.210]

 7 32 ms 34 ms 27 ms

 187.ATM2-0.TR1.SCL1.ALTER.NET

 [146.188.147.146]

 8 95 ms 98 ms 105 ms

 107.ATM6-0.TR1.DCA1.ALTER.NET

 [146.188.136.221]

 9 94 ms 94 ms 101 ms

 299.ATM6-0.XR1.TCO1.ALTER.NET

 [146.188.161.169]

 10 101 ms 91 ms 92 ms

 193.ATM9-0-0.GW2.TCO1.ALTER.NET

 [146.188.160.57]

 11 102 ms 96 ms 96 ms

 uu-peer.pos-4-oc12-core.ai.net

 [205.134.160.2]

 12 111 ms 112 ms 113 ms

 border-ai.invlogic.com

 [205.134.175.254]

 13 123 ms 109 ms 113 ms

 router.invlogic.com

 [198.182.196.1]

 14 158 ms 115 ms 165 ms

 www.linux.org [198.182.196.56]

Trace complete.

The report tells us that our data packets made 14 hops,
starting at the end of our DSL link located at Nevada
Bell’s central office. The report then gives us informa-
tion about each of the 14 hops: first, the round-trip du-
ration (in milliseconds) of each of the three probes that
the tracert program sends to each node in the series,
and then the name (if available) and the IP address of
each of those nodes.

Where did this arrangement come from, and why is it so
complex? To answer these questions, we need to take a
brief look at the history of distributed network computing.

The Legacy Of The ARPAnet
The granddaddy of today’s Internet was an experimen-
tal communications system—the Advanced Research
Projects Agency Network, or ARPAnet—conceived in
the 1960s at the RAND Corporation on behalf of the U.S.
Department of Defense (DOD), and launched in 1971
with four sites in the western United States. By 1976,
the projected number of nodes in the ARPAnet had
grown to an unmanageable figure (255, to be precise),
and a new way to connect them had to be found. Enter
the router, which enabled the ARPAnet to double in size
over the next few years, acquiring 200 host machines
by 1981. In 1985, the ARPAnet broke the thousand-host
barrier. By 1989, the experiment was over, and the
ARPAnet as a system ceased to exist...leaving more than
100,000 machines interconnected via something called
the “Internet.”

Because of the circumstances envisioned for its use, the
ARPAnet was required to heal itself whenever any single
part of the network failed. (One type of failure contem-
plated by the DOD was the physical destruction of the
ARPAnet’s computers and communications links by
“nuclear events.”) This requirement set the ARPAnet
apart from the commercial computer networks of the
day, which were centrally controlled. To prevent a single
point of failure from bringing down the entire commu-
nications system, the ARPAnet’s controlling functions
had to be distributed, as evenly as possible, among com-
puters physically located many miles apart.

2 Chapter 6

Obviously, the number of possible failure points was
huge. Moreover, because any given computer could, in
theory, fail at any given time, the ARPAnet’s designers
also faced the daunting task of dealing with random
changes in the topology of the network. These changes,
the designers theorized, would be caused by nodes and
links that not only disappeared, but, in the fashion of
some subatomic particles, also appeared utterly unex-
pectedly and unpredictably—which, as it turned out, is
exactly what happened.

The ARPAnet’s protocol design was continually revised,
based on an analysis of the hardware, telecommunica-
tions, and software failures that occurred. The changes
that were made allowed the ARPAnet to cope with most
failures automatically, finding alternate routes to keep
data flowing even if several nodes or links went down.
These workarounds are still part of the Internet today.

Here’s how the ARPAnet’s workarounds worked. Each
connection node on the network, known as an inter-
face message processor (IMP), kept a living record of
neighboring nodes and traded information with those
nodes at regular intervals. The sum of each IMP’s knowl-
edge—including the list of neighboring nodes and a his-
tory of the information exchanged with those
nodes—was stored in a dynamic structure known as a
routing table. (Routing tables are still present, playing
a more important role than ever, in today’s Internet
hosts. Entire books have been written about their de-
sign and use, and an in-depth discussion is beyond the
scope of this book.)

From a cold standing start, all the nodes on the ARPAnet
needed only a few minutes to learn enough about the
network’s topology to be able to send data to the proper
destination. As the nodes built a history and exchanged
data with each other, they “learned” the best data-trans-
mission routes. In less than an hour, the nodes learned
so much about ARPAnet routing that, when a glitch oc-
curred (and glitches could range from a momentary in-
terruption of transmission to the complete shutdown
of a node), users rarely noticed it.

This learn-as-you-go technique is what the Internet uses
today. As an example, consider how this technique helps
your data get from your machine to a server located
12,000 miles away.

Before any data goes anywhere, it has to be properly
“gift-wrapped.” In the Internet, the bow-adorned object
is an IP packet, which consists of a box with data in-
side, wrapping paper to ensure that the data stays to-
gether, and a tag that states who is sending the packet
and who is supposed to receive it. Unlike the typical
recipient of a holiday gift, the intended recipient of an
IP packet can be miles or continents away...and the IP
tag tells you absolutely nothing about how to get the
package to the right tree.

In a well-known experiment done in the 1960s, research-
ers found that a letter, addressed (by name only) to a
randomly selected individual and entrusted to another
randomly selected individual, reached the addressee
after a remarkably small number of person-to-person
transfers. (In fact, the researchers concluded that any
living person could theoretically reach any other living
person in six or fewer “hops.”) The purpose of the ex-
periment was to show how many people each human
being knows directly and, by concatenation and exten-
sion, how interconnected all of humanity is.

However, computers aren’t people, so the designers of
the ARPAnet had to devise a less complex way to ac-
complish the same task; that is, determining a path be-
tween two random points without the help of a master
directory. When the ARPAnet was small (with fewer than
64 nodes), each IMP kept a record of how far away and
in what (logical) direction each host was located. As
the ARPAnet evolved toward the Internet, network de-
signers started to group hosts together, into subnets, to
limit the amount of record-keeping data to a manage-
able size. Thanks to subnets, the amount of data that a
pair of routers had to transfer to one another was also
kept to a reasonable size. Today’s Internet routers still
operate this way, working in layers, so that each router’s

task is relatively small—even if the number of hosts
exceeds a billion. “Divide and conquer” could well be
the Internet’s motto.

Routing: What Makes The Internet
The Internet
At its most elementary level, routing function means
switching data through a series of ports located in a
single physical unit, so that the data gets from its source
to its destination. For example, the routing box shown
in Figure 6.1 has a total of nine ports: eight ports con-
nected to remote computers or to other routing boxes,
and one local connection within itself.

Figure 6.1 Block diagram view of a router.

port 1

port 2

port 3

port 4

port 5

port 6

port 7

port 8

x

x

x

x

x

x

x

x

x
local

How does this router work? Assume that it receives a
data packet at its local port. The routing software ac-
quires the packet’s destination address and, using the
information stored in the router’s internal routing tables,
determines the best port from which the data packet
should be sent.

In Figure 6.2, the routing software has determined that
for the data packet to reach its destination efficiently,
the packet should leave the router via Port 6.

Routing 3

Routers do not have an actual physical address to which
they send data packets that are supposed to be discarded
(for example, data packets for which no route can be
found, or whose Time To Live (TTL) value has reached
0). However, a Linux kernel routine allows such doomed
data packets to be removed from a router’s memory, in
an operation known familiarly as “sending the data to
the bit-bucket.”

A router follows the same steps each time it performs
the analysis and port-assignment process. So, why
doesn’t the router always send out data packets via the
same port? Because the port that the router ultimately
selects depends on the information stored in the rout-
ing table, not on any change in the way the router per-
forms its analysis of that information.

In short, then, the act of routing embraces the entire
process of getting a message from, for example, the
small (and very real) town of Truth or Consequences,
New Mexico to its ultimate destination, the capital city
of Ouagadougou, in the African nation of Burkina Faso.

The Data Packet Delivery Service
The router code that is the subject of this chapter uses
information about the network (as collected by the IP
and ICMP protocol handlers and by other node-resident
processes that exchange information with neighboring
nodes) to decide how to handle a data packet that is
being “sent.” However, in the router world, a data
packet’s destination is not necessarily a physically dif-
ferent machine. An internal process within a router is
just as valid as an external destination, and routers of-
ten “send” packets to such internal processes.

The routing table is kept up to date by a set of pick-a-
little talk-a-little router-to-router protocols. These pro-
tocols, which are implemented as daemons (programs
that live in the computer, but that are not part of the
kernel), gossip continually with each other. By exchang-
ing information this way, and especially by discarding
obsolete information about traffic conditions and ex-
ternal nodes, they make the kernel code’s task much
easier. The kernel code, which uses the routing table
several hundred times a second when data is being trans-
ferred, is appropriately grateful.

Back to your gift-wrapped data package. The IP packet
starts out from its point of origin in Truth or Conse-
quences, New Mexico. The first router that your packet
reaches on the Internet contains a collection of hints in
its routing table, gathered from its neighboring routers,
that suggests the best way to forward a packet toward
Ouagadougou. (In the data-transmission world, “best
way” may mean any of several things. It might be either
the fastest way to send information, the method that’s
cheapest in terms of resources or money, the route that’s
the least sensitive politically, or the pathway that’s the
least likely to damage the data.)

The first router sends your package to a second router,
which, with luck, is located well toward your package’s
destination. This second router then makes its best guess
about how to pass the data, and speeds the package on
its way toward the next router. The process continues

until the package reaches its destination in Ouaga-
dougou and the recipient opens it. In the very worst case,
the package never gets to Ouagadougou. Instead, it hits
a digital dead-end and is dumped unceremoniously into
a bit-bucket.

In an ideal world, your package would travel as directly
as possible to its destination. However, the data-trans-
mission world is far from ideal. Just as on city streets or
at airports, traffic congestion can affect a router’s for-
warding decision, such that packages are sent on de-
tours around the slow or stacked-up areas. Quite
conceivably, your Africa-bound package could arrive in
New York City or Casablanca, only to be turned around
and routed back westward.

Figure 6.2 Schematic of router with data path for a specific
packet.

Host

Server

Figure 6.3 An example of the geographical progression of a
packet route. This route depicts the physical path
taken by a packet on a college campus circa
1987.

port 1

port 2

port 3

port 4

local

port 5

port 6

port 7

port 8

discard

x

x

x

x

x

x

x

x

xx

bit
bucket

Or not. Sometimes, a router doesn’t know that a path is
congested, and forwards an IP packet into a gridlock
anyway. Remember, in selecting the outgoing path for a
packet, a router bases its decision on the information it
obtains from neighboring routers. When traffic condi-

4 Chapter 6

tions change, routers have no way of learning about the
changes instantaneously. It takes time for the word to
propagate outward from a congested node or link, and,
in the meantime, a packet could arrive at a router and
be sent onward, in all innocence, into trouble.

At its most frustrating, this slow spread of information
among routers can cause an IP packet to travel in
circles—in other words, in an endless loop. An endlessly
looping packet eventually self-destructs, dying of old
age. Unlike the U.S. Postal Service, the Internet has no
Dead Letter Office for defunct datagrams. Instead, loop-
ing IP packets evaporate without a trace, considerately
relieving the Internet of the need to dispose of them.
(This wasn’t always the case. In the early 1970s, the
ARPAnet was sometimes very, very busy, but no data
was getting through to users. The activity level was
caused by packets that had invalid host addresses and
therefore stayed alive—and undelivered—indefinitely
in the network, like a subway passenger caught short
by a fare increase, doomed to ride forever beneath the
streets of Boston—the datagram that never returned.
That’s when the network designers gave packets a fi-
nite lifespan.)

The routing tables are implemented in Linux as linked
lists, and the elements of the list are defined in the struc-
ture described at line 41260. Although the tables are
updated once or twice a minute, they are referenced
many, many times—on a busy system, hundreds of times
per second—by routing protocols, by certain free-run-
ning processes, and, most frequently of all, by the IP
module in the kernel code.

The IP module’s job is to handle packet routing requests.
Each packet is associated with its own routing request,
which means that the IP module may have to process
as many as 150,000 requests per second. Unfortunately,
one routing request does not necessarily imply only one
pass through the routing table. To handle a single rout-
ing request, for a single packet, the IP module may need
to make several trips through the routing table. First, it
looks for a specific host entry. If the host entry appears

in the routing table, the IP module uses the designated
port associated with that host. If the desired host doesn’t
appear in the list, then the IP module searches for the
name of a subnet that contains the host. If the IP mod-
ule does find such a subnet, it sends the data out through
the designated port for that subnet. If it doesn’t find the
right subnet, then it looks for a default port to which to
send the data. If it finds the name of a default port, it
sends the data to that port. Otherwise, it returns an er-
ror message and takes the appropriate action, depend-
ing on the source of the routing request.

Based on the information stored in the routing table, a
data packet is directed to a specific interface on the com-
puter. In the trivial case (when a router box has only
one outgoing port), the packet is sent to a port (such as
a modem or an Ethernet port) that leads to the outside
world. When a router has two or more ports to the out-
side world, the decision process becomes more com-
plex, but the result is the same: the IP module decides
which port gets the packet.

For an idea of the amount of work a router does, con-
sider a digital DS3 trunk operating at a speed of 44mega-
bits/second (Mbps). A router connected to such a trunk
handles from 60,000 to 150,000 packets per second, vir-
tually nonstop. In other words, this router has six whole
microseconds (6/1,000ths of a second) to redirect each
packet that comes in through any single port. If the re-
direction takes longer, the whole stream of packets may
slow down, or even stop.

A T1 or ADSL (asymmetric digital subscriber line) chan-
nel is much slower, pouring in only 2,000 to 5,300 pack-
ets/second, whereas a 56-kilobyte/s (Kbps) modem or
frame relay connection drizzles just 75 to 180 packets/
second into the router. But no matter how fast or slowly
the packets come in, the time required to make a rout-
ing decision directly affects a router’s performance, even
if the router lives in a single system. Indeed, packets
can be lost when input buffers overflow, which can hap-
pen when a router’s decisions are too slow. Fortunately,
as you’ll see in the commentary section of this chapter,
the Linux code contains some time-saving tricks that
keep the routing process from becoming a data bottle-
neck.

Of Packets And Checks
Messages travel through the Internet much the same way
that checks flow through the commercial banking sys-
tem. From the bottom up:

• Individual Internet surfers are analogous to busi-
nesses depositing checks that they’ve received from
customers.Figure 6.4 The routing decision tree.

Matching host
entry found in
routing table?

Use port associated
with routing table
entry

No

Yes

Matching subnet
entry found in
routing table?

Use port associated
with routing table
entry

No

Yes

Default route
entry found in
routing table?

Use port associated
with routing table
entry

No

Yes

Return error to
requestor (may
generate ICMP msg.)

Routing 5

• Companies whose networks are completely internal
(the intranets, used only by company employees and
authorized guests) are analogous to small banks.

• A typical regional ISP is analogous to a standard bank.

• The upstream providers are analogous to bigger
banks.

• The Internet has several nationwide ISPs, each with
its own network, which are analogous to the
multistate megabanks.

• At the very top of the heap, the similarity diverges
slightly. Instead of a single analog of the U.S. Federal
Reserve System, the Internet has several backbone
providers, in the form of the companies who run the
large networks that link the various regions of the
United States. However, like the Fed, these compa-
nies are the lords of all they survey.

Checks fly in and out of banks in all directions. A few
checks are deposited at a bank against accounts at that
same bank—that’s the easy case and is handled com-
pletely in-house. The vast majority of checks, though,
are drawn on one bank and deposited at another. They
come in through teller windows and ATM machines;
from correspondent banks; and (for member banks)
from the Fed itself. The incoming checks drawn on ac-
counts at the bank itself are separated and processed,
and then the checks drawn on other banks are sorted
and sent on their way.

Analogously, data packets fly in and out of IP routers
through a number of ports. When you log on to the
Internet, your system receives packets confirming or
denying your access. Those packets are sent to, and stay
in, processes that live in your computer system. How-
ever, the great majority of packets that are sent out from
your computer, via your modem or broadband link to
the Internet, are processed at another system—usually
a server of some kind—living at your ISP. A router box
located at your ISP, at the upstream provider, or in the
backbone can, in theory, have as few as three ports; how-
ever, most of these routers have several hundred ports

through which incoming packets arrive and reshuffled
packets depart.

What makes the check-clearing analogy to the Internet
so remarkable is that the decisions that govern how
checks are routed are exactly the same decisions that
are used to determine how data packets are steered. In
the banking system, a check comes in and, based on its
ABA/FRD (American Banking Association/Federal Re-
serve District) number, also known as the “routing num-
ber,” the bank decides where the check goes next
(usually to another bank). On the Internet, a data packet
comes in and, based on the Internet address in the
packet header, the router decides where the packet goes
next (usually to another router). In the banking system,
the final decision is which truck a bag of checks should
be tossed into. In an Internet router, the “ultimate deci-
sion” is the one that determines the I/O port to which
the packet should be directed.

The major difference between the Internet and the U.S.
check-clearing system lies in the acquisition of the in-
formation on which routing decisions are based. Rela-
tionships between banks are essentially static. A “Grand
Opening” here or an unexpected bank failure there is a
relatively small change, and is managed pretty much by
exception. And in the banking world, mergers and take-
overs don’t “just happen.” They’re planned long in ad-
vance and often are heralded widely. In the online world,
though, the network is constantly changing, with no fan-
fare at all. The beauty of the Internet is that it makes
adjustments—automatically and continuously—that the
banking system just couldn’t handle.

Another difference between the banking system and the
Internet is that every bundle of checks has to be accom-
panied by a “cash letter” that indicates the dollar value
of each check in the bundle. In the Internet, as imple-
mented in the United States, there is no accounting of
any kind. That’s not true in some other countries, where
information transfers are billed by the kilopacket. In
such cases, “least-cost routing” has a real monetary
value, and mistakes can cost someone a bundle.

The Internet’s paramount feature—flexibility—also
makes it fast. For instance, if a courier company’s truck
is full, banks and the Fed won’t ship a bag of checks on
a different truck on a different route. Instead, the bag
waits for the next truck on the usual route. In contrast,
many Internet routers don’t “wait for the next truck.”
Instead, they divert data packets to paths that are open
(albeit sometimes basing that decision on the cost of
the alternate paths, in terms of time or reliability).

This dynamic routing—with parts of a message being
forwarded over different and sometimes wildly diver-
gent routes—can cause packets in a TCP stream, or frag-
ments of a UDP packet, to arrive at their destination in
wildly scrambled order. Putting packets (and sometimes
fragments of packets) back into their original, compre-
hensible order takes time and computational effort. But,
this effort is a small price to pay for coherent messages,
even if some packets have to make detours, sometimes
in rattly decrepit trucks over dusty back roads, to avoid
fatal obstacles.

This matter of packet reassembly comes up again, with
renewed significance, in connection with the IPv4 and
TCP protocols, as you’ll see in the following chapters.
For now, though, the next section examines the Linux
router code in detail.

Routing In Linux: The Routing-Table
Handling Routines
The routines in the source module route.c appear in ar-
bitrary order and are not organized with any particular
logic. To help you locate the modules in the code list-
ings, Table 6.1 and Table 6.2 list the functions in the
source module route.c.

Table 6.1 Index of functions, sorted by line number.

Number Function

19680 rt_logmask

19691 rt_mask

19698 fz_hash_code

(continued)

6 Chapter 6

Routing Table Structure
The routing table consists of a series of elements in a
singly-linked list. The definition of the structure starts
on line 41260. The following list describes the most im-
portant fields. (Other fields exist that are used internally
by the router code, and yet other fields exist that are
commonly used in routers, but not in the Linux imple-
mentation.)
41262: rt_next, the link to the next routing-table entry.

41263: rt_dst, the host or network address described
by this entry.

41265: rt_gateway, the gateway address (the
recommended immediate path to the destination
address contained in rt_dst).

41266: rt_refcnt, the reference counter. When
decremented to 0, this routing-table entry
becomes a candidate for removal during garbage
collection, so that the memory space used by
the routing-table entry element can be
recovered.

41268: rt_window, the size of the TCP window that
should be used for the destination described by
this routing-table entry.

41271: rt_dev, the pointer to the name (a null-
terminated ASCII string) of the device to be used
to reach the destination described by this
routing-table entry.

41272: rt_flags, the flags for this routing-table entry.
The flags themselves are described separately,
in the next section.

Table 6.2 Index of functions, listed alphabetically by name.

Number Function

19868 bad_mask

20040 fib_add_1

19966 fib_create_info

19916 fib_del_1

19879 fib_del_list

20274 fib_flush_1

19708 fib_free_node

19828 fib_lookup

19732 fib_lookup_gateway

19778 fib_lookup_local

19698 fz_hash_code

19855 get_gw_dev

21417 ip_rt_advice

20582 ip_rt_check_expire

21181 ip_rt_dev

20868 ip_rt_flush

21393 ip_rt_ioctl

21353 ip_rt_kill

21222 ip_rt_new

21161 ip_rt_put

20882 ip_rt_redirect

21190 ip_rt_route

20555 ip_rt_run_bh

21036 ip_rt_slow_route

21423 ip_rt_update

20854 rt_add

20933 rt_cache_add

20688 rt_cache_flush

20421 rt_cache_get_info

20838 rt_del

20246 rt_flush_list

20490 rt_free

20923 rt_garbage_collect

20730 rt_garbage_collect_1

20322 rt_get_info

20810 rt_kick_backlog

20521 rt_kick_free_queue

19680 rt_logmask

19691 rt_mask

(continued)

Table 6.1 Index of functions, sorted by line number
(continued).

Number Function

19708 fib_free_node

19732 fib_lookup_gateway

19778 fib_lookup_local

19828 fib_lookup

19855 get_gw_dev

19868 bad_mask

19879 fib_del_list

19916 fib_del_1

19966 fib_create_info

20040 fib_add_1

20246 rt_flush_list

20274 fib_flush_1

20322 rt_get_info

20421 rt_cache_get_info

20490 rt_free

20521 rt_kick_free_queue

20555 ip_rt_run_bh

20582 ip_rt_check_expire

20655 rt_redirect_1

20688 rt_cache_flush

20730 rt_garbage_collect_1

20764 rt_req_enqueue

20789 rt_req_dequeue

20810 rt_kick_backlog

20838 rt_del

20854 rt_add

20868 ip_rt_flush

20882 ip_rt_redirect

20923 rt_garbage_collect

20933 rt_cache_add

21036 ip_rt_slow_route

21161 ip_rt_put

21181 ip_rt_dev

21190 ip_rt_route

21222 ip_rt_new

21353 ip_rt_kill

21393 ip_rt_ioctl

21417 ip_rt_advice

21423 ip_rt_update

Table 6.2 Index of functions, listed alphabetically by name
(continued).

Number Function

20655 rt_redirect_1

20789 rt_req_dequeue

20764 rt_req_enqueue

Routing 7

41273: rt_mtu, the maximum transmission unit (MTU)
size, in bytes, from this host/router to the
destination described by this routing-table entry.

41274: rt_irtt, the initial round-trip delay time that TCP
shall assume exists between this host and the
destination described by this routing-table entry.

The following bit flags may appear in the value con-
tained in rt_flags:
38704: RTF_UP, which, when set, indicates that the

route is usable.

38706: RTF_GATEWAY, indicating that the destination
contained in rt_dst is a gateway (rather than a
network or host).

38708: RTF_HOST, indicating that the destination
contained in rt_dst is a host (not a network)
with a possible gateway.

38712: RTF_DYNAMIC, indicating that this routing-
table entry was created by an ICMP redirect
packet received by the router/host.

38714: RTF_MODIFIED, indicating that this routing-
table entry was modified dynamically by an
ICMP redirect packet received by the router/
host.

38716: RTF_MSS, which instructs the code to use the
maximum segment size contained in rt_mtu for
this route.

38718: RTF_WINDOW, which instructs the code to use
the per-route window size maximum contained
in rt_window for this route.

38720: RTF_IRTT, which instructs the code to use the
initial round-trip time contained in rt_irtt for
this route.

38722: RTF_REJECT, indicating that the route is a
“reject” route. If the search finds a match on this
route, the assumption should be made that no
route exists. This flag is used to block transfers
involving port-to-private-network addresses

(and netmasks), such as 10.0.0.0 (255.0.0.0),
172.16.0.0 (255.240.0.0), and 192.168.0.0
(255.255.0.0).

38724: RTF_NOTCACHED, indicating that this route
is not cached.

These same flags are used in the rt_entry structure,
defined at line 38677, in the structure member rt_flags
(line 38687).

The address of an instance of this structure is specified
in the argp parameter. This parameter is copied from
the corresponding parameter ioctl calls that specify the
function requests SIOCADDRT (add route, at line
39518) and SIOCDELRT (delete route, at line 39520).

Although no explicit limit exists on the number of en-
tries that a routing table can contain, a long list natu-
rally takes longer to traverse than a short one.

/proc File System Support
In the Linux environment, users and many utility pro-
grams get information about the internal state of the
system through the proc file system. This is a pseudo-
file system, usually accessible through the directory /
proc, that lets a user (via the shell and the cat utility) or
an application (via standard file I/O) read the current
condition of various internal processes.

The file system “files” are actually the output of execut-
able routines, such as the ones in route.c that we will
be reviewing, that report on the internal state of the sys-
tem. In other portions of Linux, the “files” also accept
data; as we’ll see in other portions of the TCP/IP stack.

The routine rt_get_info is accessed via a pointer refer-
ence at line 6317, which in turn is referenced by the source
file /usr/src/linux/fs/proc/net.c, which is a portion of the
file system source (not included in this book). It outputs
the contents of the main routing table. The routine out-
puts a header line followed by a line for each routing-
table entry. Here is a sample of the output (with each
physical line of output shown in the form of three lines):

Iface Destination Gateway Flags RefCnt

Use Metric Mask MTU Window IRTT

eth0 0001010A 00000000 01 0

10 0 00FFFFFF 1500 0 0

l0 0000007F 00000000 01 0

5 0 000000FF 3584 0 0

rt_cache_get_info is accessed via a pointer reference
at line 6323. The routine outputs a header line followed
by a line for each routing-table cache entry, as in this
example (in which each physical line of output is shown
in the form of three lines):

Iface Destination Gateway Flags RefCnt

Use Metric Source MTU Window IRTT

HH ARP

eth0 FF01010A FF01010A 05 0

1 0 1501010A 1500 0 0

1 1

eth0 1401010A 1401010A 05 0

1 0 1501010A 1500 0 0

2 1

l0 1501010A 1501010A 05 1

2 0 1501010A 3584 0 0

-1 0

eth0 1601010A 1601010A 05 0

1 0 1501010A 1500 0 0

2 1

eth0 1701010A 1701010A 05 0

1 0 1501010A 1500 0 0

2 0

eth0 8A01010A 8A01010A 05 0

1 0 1501010A 1500 0 0

2 1

8 Chapter 6

Later in this chapter , you’ll see where each of these
fields comes from.

To generate the routing-table cache shown here, we
polled every computer on a small network and then
immediately requested the dump just shown. After a few
minutes, we asked for another cache dump. The result
of the second request is shown here:

Iface Destination Gateway Flags RefCnt

Use Metric Source MTU Window IRTT

HH ARP

l0 0100007F 0100007F 05 1

9 0 0100007F 3584 0 0

-1 0

All the entries we had generated earlier were cleared
out of the cache very quickly. This speedy disposal
makes sense, because the purpose of the cache is to
speed up routing for active connections.

The formats for the output of these two pseudofiles are
identical. The information in the lines forms a colum-
nar database, with tab (\t) characters separating the
fields. A database record is complete when the program
sees a newline (\n) character or an end-of-file condi-
tion. Because this data is intended to be read and ma-
nipulated by programs, the formatting of entries that
are longer than the default tab width of the terminal (or
other device, or printing protocol) becomes an issue.
For example, in the caching table, you see “Metric
Source”—that’s two separate columns, not a two-word
description of a single column.

rt_get_info
This function is called multiple times. Based on the pa-
rameter offset, the function returns information in se-
quence about the routing table. The first time the
function is called, the value of offset should be 0. Each
subsequent time, the value of offset is incremented by
the prior value of the offset plus the length of the infor-
mation returned during the prior call. This way, the file
system routines can return a “buffer” of information for

each call, without having to save significant state infor-
mation for each process. (This technique also plugs a
potential source of memory leaks.)

Although this technique increases the amount of pro-
cessing to be performed, and also increases the risk of
garbled data due to changes to the table that can occur
between calls, it reduces the risk of other problems. For
example, if you use the cat utility with a pipe to the
more utility, early termination of the more utility will
cause a “broken pipe” condition, which may prevent the
rest of the output from ever being read.
20334: Output the header line to the buffer, if

appropriate. Note that the sprintf call pads the
output to 128 characters (including the new
line), regardless of the actual length of the
header.

20343: If necessary, wait on the ip_rt_lock semaphore.

20347: Go through the internal list of Forward
Information Block (FIB) elements, one by one,
from beginning to end.

20352: If no entries are associated with the current FIB
element, then go to the next FIB element and
try again.

20355: If the current FIB element is associated with a
line that has already been printed, advance the
virtual line pointer, go to the next FIB element,
and try again.

20362: If a hash table is present for the current FIB
element, then set the number of slots to the size
of the hash table and point to the first list pointer.
Otherwise, set the number of slots to 1 and
position the pointer at the start of the list.

20373: Walk through the hash table (either one element
or RTZ_HASH_DIVISOR elements).

20376: Walk through the current routing-table list.

20385: If this FIB has been output already, skip the
entry.

20391: Prepare the line of information describing the
route. (The correspondence between the
column label printed and the data field
references is shown in Table 6.3.) The variable f
is a pointer to the current block, while the
variable fz points to the current zone; that is, to
the current set of routes having a specific
number of one-bits in the mask. (In the code,
the variable fi is set to the pointer expression f-
>fib_info. The expression is expanded in the
table, to clarify the path to the data.)

Table 6.3 Column heads and corresponding data source.

Label Data Source Data Type

Iface f->fib_info->fib_dev->name char[]

Destination f->fib_dst unsigned long

Gateway f->fib_info->fib_gateway unsigned long

Flags f->fib_info->fib_flags unsigned short

RefCnt (zero) —

Use f->fib_use unsigned long

Metric f->fib_metric short

Mask fz->fz_mask unsigned long

MTU f->fib_info->fib_mtu unsigned short

Window f->fib_info->fib_window unsigned long

IRTT f->fib_info->fib_irtt unsigned short

20401: Take the prepared information (written to the
temporary buffer) and output it in the form of a
128-byte line.

20403: Increment the position by 128 bytes. If the buffer
passed by the caller is full, then break out of the
loop prematurely (by branching to the program
label done). The goto done instruction is the
cleanest way to break out of all three loops at
once, even if it makes structured-programming
purists wince.

20406: These right braces close the loops started in line
20376, line 20373, and line 20347.

20410: The definition for the program label done.

Routing 9

20411: Free the lock and restart any processes that were
waiting on the lock.

20414: Calculate and send back to the caller the starting
offset for the next call, and return the length of
the new data in the buffer.

rt_cache_get_info
This function is considerably simpler than the
rt_get_info function, because the information is in a
simple linked list. Each call returns a specified amount
of information, with each call getting the next set of lines.
20432: If this is the first call, then write the column

headers to the buffer.

20442: Wait for the semaphore ip_rt_lock to become
available, and then lock it.

20446: Cycle through each of the cache table lists (the
number of which is defined by the manifest
constant RT_HASH_DIVISOR), taking the
elements one at a time.

20455: If the element in question has been printed, then
continue searching for the point at which to
resume printing.

20461: Print the information for the cached route. (The
correspondence between the column label, as
printed, and the data-field references is shown
in Table 6.4.) The variable r is a pointer to the
current block

20471: Take the prepared information (written to the
temporary buffer) and output it in the form of a
128-byte line.

20473: If the buffer is full, abort the loop (by branching
to the program label done); otherwise, continue
scanning the lists.

20475: The right braces close the list-traversing loop
(line 20448) and hash-table scan loop (line
20446).

20479: Unlock the semaphore and restart any process
that is waiting on this lock.

20482: Calculate and return the offset for the next call;
then, return the length of information for the
buffer in this call.

The ioctl Handling Routine
External processes and some of the kernel routines talk
to the routing system via the standard ioctl system call.
This routine handles all requests for I/O control directed
toward routes.

ip_rt_ioctl
This steering function takes a system call from a pro-
cess and determines the proper routine for executing
the request. This function also performs all necessary
validation operations, so that memory isn’t corrupted
and no unexpected machine exceptions occur.
21393: This is the entry point called from the file /usr/

src/linux/net/ipv4/af_inet.c (line 6079).

21398: This code selects one of the two permitted
function requests for the ioctl call.

21402: The ioctl calls that affect routing-table entries
must be made by a superuser process. This code
checks for the superuser condition.

21404: To prevent panic (which can occur when a
kernel routine causes a memory fault), the

memory area used by the ioctl routine has to
be checked for sanity.

21408: The routing-table information is copied from the
process space to local memory (allocated on the
stack at line 21396). This operation speeds
processing immensely, and simply is a sensible
thing to do.

21410: Depending on the function, a route is either
killed or created/updated. For route creation, the
function ip_rt_new is called. For route deletion,
the function ip_rt_kill is called. In either case,
when the applicable function is called, the local
routing-table data is passed via a pointer, and
the function’s return value is propagated to the
calling routine, from where it eventually returns
to the process that started the entire operation.

Adding Routes To The Table
Before the routing system can be used, entries need to
be placed in the routing table. This action is performed
at system boot time, when the route(8) utility is used
to install some basic routing information. The startup
calls are located in various places, depending on the dis-
tribution of Linux being used. In Slackware, these calls
are in the file /etc/rc.d/rc.inet1. In Red Hat, they’re in /
etc/sysconfig/network-scripts/ifup, with the parameters
in /etc/sysconfig/network. Other distributions place the
initial routes in other scripts.

Linux users on LANs will find routes for localhost and
for the LAN itself. In many cases, the LAN will have a
gateway to other networks, so the desired routes will
be included in the static startup information. The sys-
tem administrator enters these numbers manually when
the Linux system is set up.

For Linux users who rely on dial-up modems and the
Point-to-Point Protocol (PPP) for Internet access, the
initial route at boot consists only of the localhost en-
try. The code that establishes PPP (or SLIP) connec-
tions then adds a route when the connection is made.

Table 6.4 Column heads and corresponding data source.

Label Data Source Data Type

Iface r->rt_dev->name string

Destination r->rt_dst unsigned long

Gateway r->rt_gateway unsigned long

Flags r->rt_flags unsigned short

RefCnt r->rt_refcnt atomic_t (int)

Use r->rt_use atomic_t (int)

Metric (zero) —

Source r->src unsigned long

MTU r->rt_mtu unsigned short

Window r->rt_window unsigned long

IRTT r->rt_irtt unsigned short

HH r->rt_hh->hh_refcnt int

ARP r->rt_hh->hh_uptodate char (Boolean)

10 Chapter 6

Boot time isn’t the only time at which routes are added
to the routing table. As you shall see (both later in this
chapter and in Chapter 7), control messages can pro-
vide information that is placed in the routing table. In
particular, ICMP redirects are used when an upstream
router finds a route to a particular host that is better
than the route provided in the default configuration.
However, because ICMP redirects are a function of net-
work complexity, you won’t run into them unless you’re
running on a large intranet.

ip_rt_new
The ip_rt_new function creates a new route entry in
the routing table. The new entry can replace (and, in
practical terms, update) an existing routing entry.
21235: If the caller specified a device name in the

structure rt (passed as argp in the ioctl call),
this code block tries to find the device as named.
The getname function is defined in the /usr/src/
linux/fs/namei.c file.

21250: Check for the correct family value, which should
be AF_INET.

21259: Copy the flags, target address, netmask, gateway
address, and metric into local variables. This
operation eliminates pointer dereferencing
when these values are manipulated. (Note that
the metric is decremented by 1 from the metric
provided by the caller.)

21277: This code supports the case in which a gateway
is being added to the table, but the gateway
device is specified by IP address instead of by
name. The code searches the device-block
linked list for a working interface that has a
matching IP address. The entries for the device-
block linked list are defined by the device
structure at line 38347. When a device is
configured, the structure member pa_addr is
filled with the IP address. If the address matches
and the IFF_UP flag is also asserted, then a
match has been found and the device name is
used thereafter.

21293: If the RTF_HOST flag is set, this code
overwrites the netmask for the request to all 1’s.

21295: If a non-0 mask has been defined and if the
socket isn’t an AF_INET socket, then the
balloon goes up and a “not-supported” return
code is returned to the caller.

21300: Gateways are specific to Internet routes; so if
this route isn’t an Internet route, a “not-
supported” return code is returned to the caller.

21308: Gateways are useless if you can’t reach them.
This code makes sure that the specified gateway
is available.

21318: If this address is not a gateway (network or
host), then zero out the gateway address. If no
device was specified, then use the ip_dev_bynet
function (line 8803) to find the device to use for
this route. If no device can be found, then tell
the caller that the designated network was
unreachable. (We perform a routing operation
whenever the caller doesn’t tell us what he or
she wants—even when we’re creating routes.)

21323: If the caller didn’t specify a mask, then copy the
device’s mask.

21332: The ip_get_mask function at line 8643 is used
to set the mask to the correct mask for the
address. This operation is performed if the
working netmask is still 0 and if CONFIG_IP_
CLASSLESS was not defined.

21336: After all of this work, the mask may still be ill-
formed. If so, it must be rejected, and an invalid-
request return code must be sent back to the
caller. The inline function bad_mask confirms
that the mask is acceptable.

21343: The information in the request to add a route
entry has passed muster, so now we call the
routine that actually does the job. The function
rt_add doesn’t return a status, so we return 0 to
the caller to indicate that that the job’s been
properly done.

ip_rt_redirect
This routine is called by ICMP handlers that have to deal
with redirect requests. They do so by creating a new
route and then deleting the old one.
20888: If no route exists for the destination, then kick

the call back (that is, return the call,
accompanied by an error code).

20892: If the information is not identical, create a new
route record and return. (This operation is not
a true redirection, but rather the publication of
a route.)

20900: Create the modified route.

20903: If the semaphore can be captured, then perform
the redirection now. Otherwise, queue up a
request for service by the backend handlers
(described later in this chapter).

ip_rt_update
This function isn’t implemented in Linux kernel release
2.0.34. However, our crystal ball says that this function
will automatically add a route to the device when it
comes up, and will remove all routes for the device
when it goes down. These events currently take place
through configuration scripts, rather than happening
all by themselves.

ip_rt_advice
This function is called by the tcp_write_timeout func-
tion in the file tcp_timer.c (described in Chapter 9).
21419: This function does nothing. The comment may

amuse readers who appreciate programmer
humor.

ip_rt_put
This routine handles the details of eliminating a refer-
ence to a routing element.
21163: Decrement the reference count.

21170: If the element has not been cached and if the
reference count goes to 0, release the element
(which has already been unlinked from any
lists).

Routing 11

bad_mask
The bad_mask function takes a network address and a
netmask and determines whether the address and mask
are acceptable. It returns 0 if the mask is acceptable
(not a bad mask), and non-0 if the mask is unacceptable
(bad mask).
19868: The function bad_mask is expanded inline

when it is encountered, so there is no call and
no parameter passing. However, because it is
used so often, it should be coded only once. This
way, code can be executed faster without any
undue expansion in size. The function returns
FALSE (zero) if the mask is acceptable and
returns NOT FALSE (non-zero) if the mask is
ill-formed for the address.

19870: The address in question and the subnet address
(obtained by taking the one’s complement of the
netmask) must yield a non-0 address.

19872: This function appears often when code performs
arithmetic on addresses and masks. The
information about addresses is stored in
“network order,” which has the most significant
byte in the leftmost position in byte-addressed
storage. The Intel 8086 family of processors puts
the most significant byte in the rightmost
position in byte-addressed storage, which in
Internet terminology is called host-byte order.
The ntohl library function does the actual “byte
swapping” when this operation is required.

19873: This is a tricky piece of code. For a mask (as
passed originally into the inline function) to be
a valid, it must consist of a string of one-bits
followed by a string of zero-bits. The one’s
complement reverses the state of the bits. When
a constant (that is, the value 1) is added to the
latter value, a valid mask is changed from a mass
of one-bits to a single one-bit. The AND function
checks for the occurrence of the change, to
speed up the testing for this condition. If any
bits survive the operation, then the mask is

invalid. Note that a mask consisting of all 1’s is
valid (that is, it signifies a host address), but a
mask of all 0’s is not. The latter result is the one
we’re looking for.

fib_add_1
20040: Note that this function extends to line 20224.

20057: Memory for the new node is allocated, and basic
information is filled in.

20065: Note that the Type of Service field is set to 0,
signifying the absence of any special
considerations for sending packets. (No way
exists to change the value in the routing table,
which makes us wonder why the structure
contains this member at all.)

20067: Now find (or create) a FIB (line 19966). If the
FIB comes back as NULL, then release the new
node allocated in line 20057.

20073: A pointer to the FIB node is placed in the routing-
table block.

20075: The length of the host portion of the mask is
calculated by the inline routine rt_logmask,
based on the mask calculated thus far.

20076: Get the pointer to the FIB zone, based on the
length of the mask. If no zone block is present,
create one. (Can’t create one? Then release the
memory allocated for the FIB and get out.)

20089: Zero out the block and then fill it with the
information available thus far.

20092: Find the insert point, such that the FIB zone list
is in mask-length order.

20095: Turn off interrupts and then insert the FIB zone
block into the proper place in the list.

20106: Put the pointer to the FIB zone block in the array
and then turn the interrupts back on. It’s
remotely possible that two processes could
cause a FIB block to be allocated more than once

(no semaphore), but both blocks would appear
in the linked list (even though only one would
have the pointer in the array fib_zones).

When the number of routine-table cache elements in a
particular FIB zone exceeds a given limit
(RTZ_HASHING_LIMIT, which, in production sys-
tems, is 16), a hashing table (consisting of 256 entries)
is created for that zone. The idea is that a search for a
particular record can be handled in fewer cycles if most
of the list can be bypassed.
20115: The purpose of this code block is to convert a

single zone list into 256 zone lists. Accordingly,
if the number of entries in the FIB zone exceeds
the hashing threshold, no hash table exists. If
the mask indicates that the routing entry is not
for a host, then create a hash table, initialize it,
and stroll through the FIB node list to build
sublists based on the calculated hash value. To
preclude the possibility of race conditions,
interrupts are turned off during the update
process.

20146: Save the fact that a hashing table now exists.

20150: What happens if no memory is available for the
creation of a hashing table? Why, nothing.
Because the old FIB zone list is still there, many
attempts will be made to create the hash table
for that zone. These attempts will slow the
proceedings, but won’t bring them to a
screeching halt.

20151: Find the proper head of the list to scan. If a hash
list is present, point to the head of the sublist
for the zone. Otherwise, point to the head of the
zone itself.

20161: Scan the zone list for the desired destination
address. Note that the routine will stop when it
reaches a NULL pointer, while the rest of the
list-scanning routines can handle a NULL flag.

20172: Continue scanning the list as long as the
destination address still matches.

12 Chapter 6

20174: Lower metric values are more desirable.
Therefore, when you find a node with a metric
whose value is equal to or higher than the metric
value of the candidate node, the search is over.

20182: If the gateway addresses match and a matching
gateway address or device has been specified,
then save the pointer to the block pointer that
meets these criteria.

20192: If the code already has a route with the same
metric value, then dump the new block and
return from the function.

20203 Insert the new FIB into the list. This operation
lays the groundwork for an “insert sort” based
on the destination and the metric value.

20210: Increment the zone entry count.

20211: Send to the peer a new route message. The
ip_netlink_msg routine is at line 17171 in
module ip_output.c (which is discussed in
Chapter 7).

20219: If a route was marked at line 20184, start looking
for duplicate routes at that point. Otherwise,
start with the route past the newly inserted
route.

20224: Search the list until either the destinations don’t
match or the list is exhausted.

20226: Look for identical gateway addresses and device
addresses. When one is found, remove the route
from the list, free the node, and decrement the
zone entry count. Then, break out of the loop.
(At most, only one duplicate route should be in
the routing table.)

20242: Because the structure of the routing table has
changed, the general hash table is cleared out
(via the rt_cache_flush routine at line 20688).

fib_create_info
The fib_create_info function allocates and fills in a FIB
structure element (defined at line 19598). (The comment

in the code is that the FIB is “shared by many of the
routes.”)
19975: If the RTF_MSS flag is not set and if the kernel

has been compiled not to discover the MTU for
the path, then use the default MTU for the
device. If the call defines a gateway
(RTF_GATEWAY), then cap the maximum
segment size at 576 bytes.

19994: If the RTF_WINDOW flag was not set, clear the
window-size value.

19996: If the RTF_IRTT flag was not set, clear the initial
round-trip time value.

19999: Search the FIB list, starting with the head point
fib_info_list and continuing until a match is
found or the end of the list (indicated by a
NULL) is reached.

20008: If the gateway address, device, flags, maximum
segment size, window size, and initial round-trip
time all match, increment the reference count
fib_refcnt, log the fact, and return the address
of the reference FIB.

20015: If the FIB wasn’t found, create a FIB by
allocating memory from kernel memory. If no
memory can be allocated, return NULL.

20020: Initialize the structure to all 0’s and then fill in
all the information that has been gathered so far.
Lines 20026 and 20029 through 20031 add this
new element to the beginning of the FIB list, so
that the search order is last-in/first-found. Log
this fact and return the address of the new FIB.

fib_lookup_gateway
This function searches the routing table for a gateway.
19737: For each element in the FIB zone list, find the

list in which the destination address is most
likely to be found. If the zone-list entry has a
hash table, select the correct list by calculating
the hash code for the destination and searching
the appropriate sublist. Otherwise, use the zone’s
master list.

19745: Whenever the destination network doesn’t
match, or if the entry is marked as the default
gateway, reject the current FIB entry and try the
next one.

19750: A hit! Return the pointer to the Forward
Information Block.

get_gw_dev
This inline function performs a route lookup based on
the destination address. If the desired address is found,
this function returns a pointer to the device name.
19858: Perform the search based on the destination

address.

19859: If the desired address is found, return the pointer
to the device name. Otherwise, return the NULL
pointer.

rt_add
This function wraps the handling of the routing-table
semaphore around the function fib_add_1, so that user
processes won’t step on each other.
20859: Only one process at a time is allowed to make

changes in the routing table. If another process
“holds the token” ip_rt_lock, then that process
must be put to sleep until the other process (or
processes) is finished with it. The sleep_on
function lives in the /usr/src/linux/kernel/sched.c
source file (not included with this book).

20861: The ip_rt_fast_lock function (defined at line
41304) is a call to the function atomic_inc,
which lives in the /usr/src/linux/include/asm-
i386/atomic.h file (not included with this book).
The atomic_inc function is written in assembler,
so that it works properly in shared-memory
multiprocessing systems. This way, nothing—
not even other hardware operations—can
interfere with the incrementing of the
semaphore ip_rt_lock. (In older, 16-bit systems,
such a function was needed to handle 32-bit
numbers in environments with interrupts,
because a 32-bit increment was implemented in
two instructions, namely, a 16-bit increment

Routing 13

followed by a 16-bit increment with carry. Intel
386, 486, Pentium, and clone chips have 32-bit
pathways, so that such an incrementation
scheme is no longer necessary. Multiprocessing
systems keep them around.)

20862: This function incorporates the inline function
fib_add_1 (located at line 20040), which
allocates the memory for the routing-table entry
and fills the node. Note that this function does
not provide an error return.

20864: The next two lines of code clear the semaphore
flag and wake up any processes that may be
waiting. Then, the function returns with no
status.

rt_logmask
19680: This inline function returns the length of the low-

order zero-bits in a mask. When the value is 0,
the value 32 is returned. Otherwise, the value is
changed from network-byte order to host-byte
order, and the inline routine ffz (“find first zero
bit”), located in file /usr/src/linux/include/asm-
i386/bitops.h, is invoked. This routine executes
a single 80386 bit-search operator, using a
pattern such that 0xFFFFFFFF yields 0,
0xFFFFFFFE yields 1, and so on, until
0x80000000 yields 31.

rt_mask
19691: This inline function is the inverse of the

rt_logmask function. It takes a number that
represents the number of zero-bits to be
generated at the low-order end of the network
address. Any value greater than or equal to 32
yields a result of 0, while a value of 0 results in
an all-ones mask. The mask is placed in network-
byte order before it is returned.

Removing Routes From The Table
Other ways exist to remove a route from a routing table,
but this series of functions is the only one that has the

effect of removing a route explicitly. Such a deletion
can be triggered by a network administrator who wants
to make a change that reflects a modification of the
physical network…or who needs to remove an improp-
erly added route that, because of the improper addition,
makes a given host unreachable.

ip_rt_kill
This relatively small routine deletes routes from the rout-
ing table.
21362: This block of code copies information from the

user’s passed structure into local storage.

21365: If the caller told us the name of the interface
(such as “eth0”), this routine gets the device
information block for the device. Otherwise, it
leaves the NULL pointer that was set in line
21360. If the caller made an error, the
appropriate error code is returned.

21381: Call the routine rt_del (line 20838) that actually
deletes the route, and propagate the return value
from the deletion attempt.

21386: This code completes the function.

ip_rt_flush
This function is called when all routes for a device need
to be cleaned out. Such a drastic action may be neces-
sary, for example, when a device is taken to the Down
state by the system operator, or when a PPP or SLIP
connection is closed.

The ip_rt_flush routine is a user wrapper for the
fib_flush_1 routine. The code starts at line 20868.

ip_rt_check_expire
This function, which is called by the /usr/src/linux/net/
core/arp.c module, checks the routing cache table for
outdated entries. This action also has the effect of emp-
tying outdated hardware handles, because the hh blocks
are eliminated along with the cache entries.
20593: Run through the 256 lists for the cache, using

the hash table as the starting point. Process each
element in the list.

20606: If the element has reached its age limit, then
remove the element completely and continue
searching the list.

20628: The following code is a very complicated way
to implement a fuzzy bubble sort. The idea is
that if two adjacent elements are present for
which the last-used timestamps are within
RT_CACHE_BUBBLE_THRESHOLD time of
each other (defined as five seconds), don’t
bother reordering the elements. Otherwise, if the
physically earlier element is “newer” than the
next element on the list, force these two
elements to swap places. This swap puts the list
in least recently used order, so that the oldest
element is at the head of the list. This way, the
relatively oldest element is the first to be pruned
when the cache gets too big.

ip_rt_hash_code
This inline function calculates a hash value (returning a
value between 0 and 255) whose purpose is to distrib-
ute IP address references evenly.
41323: Add the top 16 bits of the IP address to the

bottom 16 bits of the IP address.

41324: Add bits 7 through 0 (counting the least
significant bit as 0) to bits 8 through 15 of the
previously calculated sum, and mask off all but
the bottom 8 bits of the result. Return this result
to the caller.

fib_del_1
This routine searches the FIB subsystem and deletes
the references to this route contained in that subsystem.
19924: If the mask parameter is 0, then the reference is

to a host, not to a network.

19926: This loop sweeps the FIB zone list from top to
bottom.

19929: Set the local variable fp to the address of the
FIB, as pointed to by the FIB zone block. (Note
that this operation uses the hash-table entry, if
any, that is attached to the FIB block.)

14 Chapter 6

19935: Call the routine fib_del_list (line 19879) that
extracts the FIB block from the database.

19937: If the deletion was acceptable, decrement the
FIB zone block “contains” counter and
increment the “number of blocks found”
counter.

19941: Otherwise, if the mask is non-0, perform the
following operations:

19943: If a route has the same length mask, then pick
up the pointer to the list and traverse the list.
(The list may be obtained from the zone table
itself, or from a hash table.)

19951: Release the appropriate entries from the list. The
routine fib_del_list returns the number of
elements freed.

19957: If any routing-table elements were indeed found
and deleted, then flush the cache and return the
success indicator (0).

19962: If no elements were removed from the routing
table, return the appropriate error code.

fib_del_list
This routine takes the parameters for removing a route
and traverses the list passed to it, performing deletions
as it goes. It returns the number of elements removed.
19879: The beginning of the function. Because the list

is a pointer to a pointer (usually referred to as a
handle), the pointer needs to be doubly
dereferenced before access can be gained to any
internal element. Moreover, if necessary, the list
head can be altered without causing major
problems.

19886: Walk through the list, performing the steps on
each element of it.

19895: If the following items do not match—
destination, mask, metric (if specified), gateway
(if specified), and device (if specified)— then
go on to the next element.

19904: Remove the route block from the chain.

19905: If the route being removed is the loopback route,
then set the shortcut to the route to the NULL
pointer.

19908: Tell the neighboring systems that the route is
being removed.

19910: Free the node.

19911: Increment the released-node counter.

19913: Return to the caller, indicating the number of
routes that have been removed.

fib_flush_1
This routine kills off all routes for a given device. When
it’s done, it calls the cache flush function.
20279: Walk through the FIB zone list. If a hash table is

present for the zone, then walk through all the
lists pointed to by the hash table. Otherwise, just
walk through the single list. For each list, call
the function rt_flush_list.

20300: If any routes were removed, call rt_cache_flush
to clean up the cache.

rt_flush_list
This routine kills off all the routes for a specific device.
20252: Search each node of the list passed by the caller.

20257: If the FIB element is for a different device, and
if the block isn’t pointing to the loopback device
or if the FIB element isn’t for the device’s IP
address, continue the search.

20264: Point to the next element.

20265: If the loopback device entry is being killed off,
then reset the pointer.

20268: Free the node and increment the counter for the
number of elements removed.

20271: When the list has been exhausted, return the
number of elements that were freed.

fib_free_node
This function takes a routing-table element, removes it
from the linked list, and frees the kernel memory asso-
ciated with it. The function also checks the FIB associ-
ated with the route, to see whether the routing-table
element contains any more references. If not, the FIB is
also removed from the list and freed.
19711: If the reference counter in the FIB has been

decremented by 1 and is not 0, then don’t purge
the FIB.

19717: Remove the FIB forward link.

19719: Remove the FIB backward link.

19721: If this block is the first one on the list, update
the header pointer.

19723: Free the memory for the FIB.

19725: Free the memory for the router-table entry.

fz_hash_code
This inline function calculates a hash value (returning a
value between 0 and 255) based on the network portion
of the destination address. This function uses the inline
function ip_rt_hash_code (line 41321).
19701: Return the 8-bit hash value of the network

portion of the address. The parameter logmask
is the number of zero-bits in the mask value.
When logmask is shifted right by the number
of zero-bits, the network portion of the address
is right-aligned before the hash is calculated.

rt_del
This routine removes a specified route (or routes) from
the routing table.
20844: This code implements a semaphore for a routing-

table lock, to ensure that only a single process
at a time manipulates the routing table.

20862: Call the routine fib_del_1 (line 19916) that
actually deletes the route.

20849: Remove the lock.

Routing 15

20850: Release any processes that may be waiting
because of this lock.

20851: Propagate the return code to the caller.

rt_free
This routine handles the mechanics of freeing up a rout-
ing-table cache entry.
20494: Turn off interrupts. To do so, use the save_flags

function to save the current CPU state, and then
tell the system to disable device interrupts.

20496: Before doing anything else, confirm that the
reference count for this entry is 0.

20498: Save the pointer to any hardware handle(s), and
clear it from memory. (Strictly speaking, this
step isn’t necessary, because the memory will
be going away anyway.)

20501: Decrement the reference count in the hardware
handle. If the count is 0, then get rid of it.

20503: Delete the table entry.

20506: If the reference count isn’t 0, add this route to
the front of the free-element queue and reset the
RTF_UP flag.

20509: Set a flag to indicate that the free-element queue
contains an element.

Cache Management Routines
The designers of the Linux TCP/IP stack were well aware
that network access is “session oriented”—in other
words, that once two computers establish a conversa-
tion, the conversation lasts for a time and then ends. By
recognizing and using the session-oriented nature of
network access, the designers were able to implement
techniques that led to significant improvements in the
performance of network operations—which, on the
Internet today, is overwhelmingly synonymous with Web
browsing.

Web surfers look at sites one at a time. When surfers
land on a site and find the first taste interesting, they

tend to stay at that site—often to the exclusion of oth-
ers—until they’re satisfied or take a tangent to another,
related site.

Yesterday’s dominant application—file transfer—was
even more narrowly focused, because there were no
links to tempt users away from the FTP server they were
using. Unlike Web surfing, which only requires that us-
ers specify the correct URL to access a page, FTP re-
quires that users explicitly log onto the server.
Consequently, users tend to milk the server they’re cur-
rently using before moving on to the next one.

In the routing world, this “fixity of access” means that a
route that has been used once is very, very likely to be
used again in the near future. Conversely, a route that
hasn’t been used for a given length of time (say, 10 min-
utes) most likely will not be used again in the near fu-
ture. These paired assumptions work equally well for
routers and host systems, with the only difference lying
in the size of the cache in which the recently accessed
routes should be saved.

rt_cache_add
This function places in the routing cache a destination
used by a routing request, and also performs a house-
keeping task, by deleting the least recently used ele-
ments after a given number of elements have been
placed in the cache.
20942: During development, this code checks to ensure

that the value of the semaphore is exactly equal
to 1. A semaphore value other than 1 means that
the caller hasn’t captured the semaphore, and
that problems may therefore occur.

20952: If the device associated with the passed router-
table entry has a bind routine, and if the gateway
address is not the destination address, then
search for the correct route. Note that the
function ip_rt_route expects to be able to
capture the semaphore. Therefore, before the
call is made, this routine has to let the
semaphore go and then snatch it back on return.

20963: If a route was found, and if the route is identical
to the route that was passed by the caller, then
call the device-bind routine.

20971: If the route is different, then update the
hardware handle (if one is present) and copy
the pointer from the original route to the new
route. Then, call ip_rt_put to place the new
route information in the cache.

20979: Caches work best when they’re small. This code
triggers a cleanup when the cache grows too
large.

20983: Link the route into the hash table.

20994: Point the hash table to the new route (so that
the most recently used route is at the head of
the list).

21003: This loop walks through the list, checking for
entries that have timed out (manifest constant
RT_CACHE_TIMEOUT, currently 300
seconds) or that are duplicates of the previously
checked route. If an entry is found that meets
either of these conditions, then that element is
removed and the cache-size counter is
decremented. In any case, the search continues
until all the elements have been checked.

21024: The CPU flags are restored to their previous
state (the flag of interest is the interrupt-enable
flag) and the function returns.

rt_cache_flush
This small routine cleans up the cache buffer.
20693: This loop cycles through all

RT_HASH_DIVISOR possible cache lists.

20698: If the hash table points to nothing, then continue
the loop.

20704: Wipe out the pointer to the hash-table entry. (The
value of the pointer was saved earlier, in the
variable rth.)

16 Chapter 6

20707: Cycle through the link list and free up the
elements.

20728: Complete the flushing of the routing cache table.

rt_garbage_collect_1
This routine swings through the FIB list and purges any
element(s) that shouldn’t be there.
20737: Continue through the process until the number

of cache elements is below the limit defined by
the manifest constant RT_CACHE_SIZE_MAX
(256 elements).

20739: Run through the hash table and process each
list entry.

20746: If the entry hasn’t expired (based on the time of
last use, adjusted by the number of routes using
this entry), then continue searching.

20749: Decrement the cache-content count, adjust the
list, and free the element. The break statement
causes the code to start the search from the start
of the hash table.

20758: When no candidates for removal remain,
determine whether the garbage-collection
operation was thorough enough. If not, decrease
the expiration interval and go again. This way,
enough elements will be deleted to reduce the
cache to a reasonable size.

rt_garbage_collect
The purpose of this function (which is a wrapper for
the function rt_garbage_collect_1) is to ensure that
the routing-table semaphore is captured before the
cleanup operation is performed. The function starts at
line 20923.

Backend Handlers
Some jobs in route.c just can’t be done when the origi-
nal request comes in. To handle such instances, the
Linux programmers set up queues and a flag word
ip_rt_bh_mask to deal with the issues as they arise.

ip_rt_run_bh
This function is the entry point for the backend han-
dlers. It is called when the lock is released (using
ip_rt_unlock) and a backend job needs to be done. In
one respect, this function is a wrapper for a series of
functions that run with interrupts inhibited. Conse-
quently, no way exists that the semaphore can be “sto-
len.” When required (as indicated by bits in
ip_rt_bh_mask), the following three routines are called:
rt_kick_backlog , rt_garbage_collect_1, and
rt_kick_free_queue.

When work needs to be deferred, the indicator flags are
set by various routines in route.c.

rt_req_enqueue
This routine is used by ip_rt_redirect when a redirect
request has to be queued. This simple interrupt-safe rou-
tine just adds a request to a request list.

rt_req_dequeue
This routine is used by rt_kick_backlog when a redi-
rect request has to be removed from a queue. This simple
interrupt-safe routine simply removes a request from a
request list and returns it.

rt_kick_free_queue
This routine is a cleanup routine borrowed from rt_free,
previously described. Any routing element that has a
non-0 reference count and that was to be freed is handled
here.
20525: Turn off (in other words, reset) the “gotta-do-it”

flag.

20529: Walk through the free-element list. If the element
now has a 0 reference count, remove the
hardware-handle cache element and then
remove the routing-table entry, too.

rt_kick_backlog
This routine goes through the list of requests for route
redirection. Each previously queued request is pro-
cessed (by calling rt_redirect_1, using the information
about the request), and the request element is removed
from memory.

rt_redirect_1
This routine accepts a call from ICMP. The call causes
the routine to record a new route to a host, as deter-
mined by the ICMP message-processing code.
20661: If the gateway address is the desired interface,

or if the device isn’t accessible via the gateway
address, forget it.

20665: Build a new routing-table element. Mark it as
“dynamic”, “modified”, “host” (as opposed to
“net”), “gateway address valid”, and “up”.

20684: Add the routing-table element to the queue.

Routing Request Handlers
This section is where the real action takes place. Al-
though routing tables are read-mostly structures, be-
cause routes are supposed to change at a relatively slow
rate, a busy host or router routinely has to handle thou-
sands of routing requests.

ip_rt_route
Find the route for a particular destination. This routine
examines the cache, because, as noted earlier, once a
route is used, it tends to be used repeatedly for the life
of a session.
21198: Select the correct cache list to examine for the

route, and parse the list.

21203: Got a hit? That is, did the destination and any
device qualifications match? If so, update the
use time, increment the in-use and reference
counts, and return to the caller. (Fast, huh?)

21213: Missed. Go look for the route the slow way.

ip_rt_dev
This routine is a wrapper for fib_lookup. The result is
similar to that of ip_rt_route, except that the slow
search is always used and no hardware handles are gen-
erated. This routine is used only by the ip_alias.c mod-
ule when aliasing is compiled into the module.

Routing 17

ip_rt_slow_route
Okay, the code didn’t find the route quickly, so now the
code has to look for it the hard way. This routine
searches for the best match in the routing table for a
given destination, and an optional device qualification.
21049: Allocate memory for a routing-table entry. If not

enough memory was available, then lie—say you
didn’t find the route.

21056: If this route request is a local lookup, use the
faster routine fib_lookup_local to find the
specific route. Otherwise, use fib_lookup.

21061: If you find a matching route, increment its in-
use count.

21067: The route may be marked “reject.” (This dodge
is sometimes used to prevent the propagation
of Internet Assigned Numbers Authority (IANA)
private network addresses onto the public
network.) Alternatively, it may have been not-
found. In either case, release the memory that
had been allocated for the routing-table entry.

21077: If the Linux kernel was configured for the
kerneld.o module, then issue a dynamic route
request.

21088: Return without a route-entry pointer.

21091: Set the source address to the interface address.
This action associates the destination address
with the gateway address that should be used.
If the destination address is the gateway address,
then decrement the use count for the FIB
(except if it’s the loopback address) and get the
FIB for the gateway.

21103: Here’s another chance to fail. If no route can be
found, then free the memory and propagate the
status of the search.

21110: Fill in all the information about the route.

21123: Mark this route as a host route (as opposed to a
network route).

21136: If you have the semaphore, and if you didn’t limit
your search to a specific interface device, then
add the route to the cache for next time (so that
you can go fast, of course!). If you don’t have
the lock, then so much for speed...but better luck
next time.

21158: Return the route information.

fib_lookup_local
This routine scans the entire routing table, looking for
the “longest” match for the given destination. The idea
here is that the route that “works” (in other words, the
one with the most high-order one-bits in the netmask)
is the route to pick. This approach gets around the prob-
lem, which existed in older code, of choosing a
nonuseful route (documented at lines 19758 through
19775).
19784: Search each zone list, resetting the success flag

at each return to 0 (no match). If a hash table is
associated with the zone list, use the hashing
function to find the head of the sublist that might
contain the desired route. Otherwise, use the
main list for the zone.

19794: Search the selected list. If the destination doesn’t
match the route’s destination, go to the next
element. Ditto if a device was specified and the
devices don’t match.

19801: If this route is a gateway route, the code can
shout “Eureka!” and return with that route.

19803: Did the code match a nongateway route? Then,
remember this fact as the zone- list exam
continues.

19805: If the code found a match in the zone list, don’t
bother looking in the next zone. The code
already knows it’s in trouble.

19808: If the code didn’t find the destination at all, then
it returns a failure report.

fib_lookup
This routine looks for any possible route to the destina-
tion. The primary difference between this routine and
fib_lookup_local is that the route in the latter case is
supposed to be on the local machine.
19834: Search the zone list. For each zone, if a hash

table is present, use it to select the correct sublist
for the desired destination. Otherwise, use the
main list. Then, scan the selected list.

19844: If the destination doesn’t match the request, or
if the device (if any) specified by the caller
doesn’t match the request, then go to the next
element on the list.

19849: Was a matching destination found? If so, then
report the success by returning the route pointer.

19852: Were no matching destinations found? If so, then
report the failure by returning the NULL pointer.

